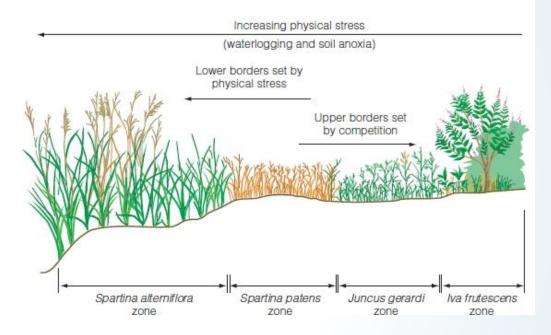
Ecological Impacts of *Phragmites australis* Invasion & Management Strategies

Drivers of Invasion

Habitat Alterations

Faunal Impacts

Biogeochemical Cycling


North Carolina

Management Impacts

Drivers of Invasion

- Marsh zonation and presence of neighboring plants
- We create a more favorable environment
 - Role of nutrient enrichment
 - Role of development, draining, and ditching
- Dispersal and expansion via sexual & asexual reproduction
- High salinity not a limiting factor

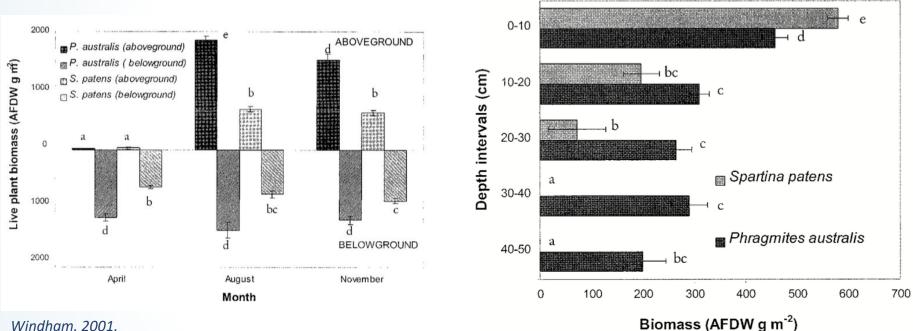
Habitat Alterations

- *Phragmites* as a habitat "modifier"
 - Soil properties
 - Biomass accumulation
 - Decomposition rates
 - Flow dynamics
 - Influence of age of *Phragmites* stand
 - Captured sediment

Soil Properties

	Raw Data				
	Phragmites		Shortgrass		
Variables	Mean	SD	Mean	SD	р
Aboveground biomass (g m ²) 1	,868	189.34	199.02	37.97	< 0.0001
Salinity (‰)	6.05	1.61	8.22	1.48	0.0090
Depth to water table (cm)	4.14	3.43	-4.24	4.75	0.0006
Microtopographic relief (cm)	0.94	0.77	8.20	2.81	< 0.0001
Redox potentials:	\sim				
High tide—10 cm	19.00	25.5	-152.9	84.00	< 0.0001
High tide—5 cm	33.33	32.83	-166.9 1	00.46	< 0.0001
High tide—5 cm (hummock)			-76.67	98.07	0.0066
Low tide—10 cm	26.68	52.846	-56.34	54.34	0.0047
Low tide—5 cm	57.43	57.51	-52.55	99.8	0.0096
Low tide—5 cm (hummock)	<u> </u>		-37.06 1	01.55	0.0273

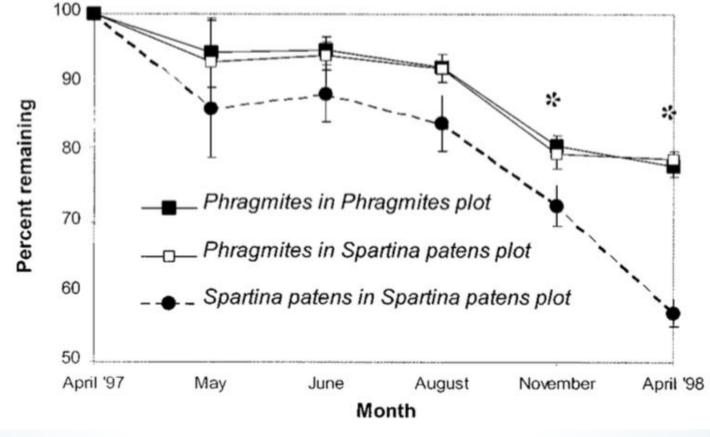
Windham and Lanthrop Jr. 1999.


HABITAT

ALTERATIONS

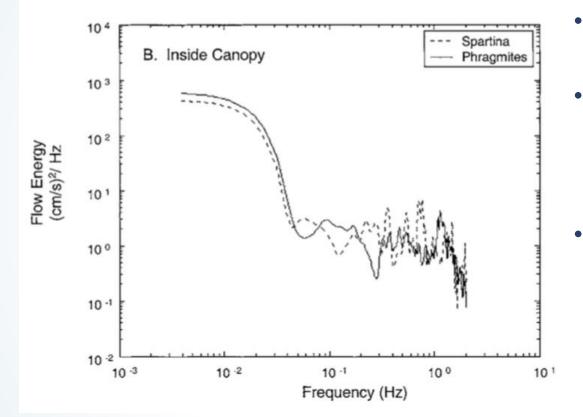
HABITAT **ALTERATIONS**

Biomass Allocation



Windham. 2001.

Windham. 2001.



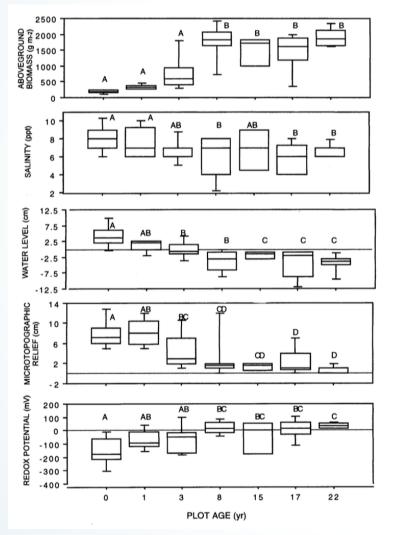
Windham. 2001.

HABITAT

ALTERATIONS

Flow Dynamics

- Flow speed attenuated in both marsh types
- Mean flow speed <5cm/s for both *Phragmites* and *Spartina*
- Comparable attenuation of flow energy


Leonard, Wren, and Beavers. 2002.

HABITAT

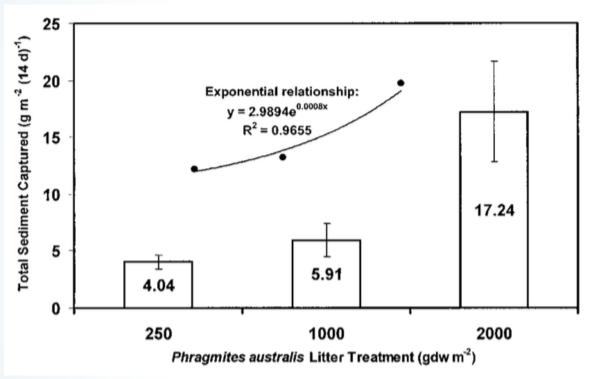
ALTERATIONS

HABITAT ALTERATIONS

Age of Stand

"Edaphic differences between the two communities developed over a relatively short period."

– Windham & Lanthrop Jr. 1999


- Aboveground biomass peaked by yr. 8
- Decrease in salinity stabilized by yr. 8
- Water level stabilized by yr. 15
- Micro-topographic relief stabilized by yr. 8
- Redox potential stabilized by yr. 8

Windham and Lanthrop Jr. 1999.

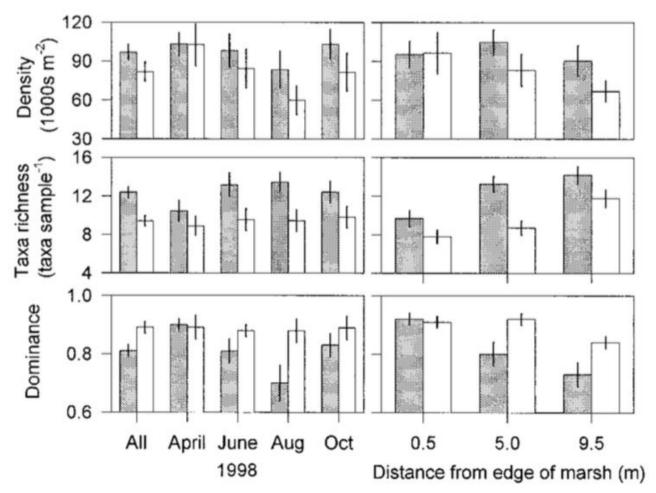
HABITAT ALTERATIONS

Captured Sediment

Rooth, Stevenson, and Cornwell. 2003

"In terms of sediment accumulation, both deteriorating marsh types, coastal eroding and subsiding creek bank, appear to benefit from the presence of high densities of litter in P. australis."

-Rooth & Stevenson 2000



Faunal Impacts

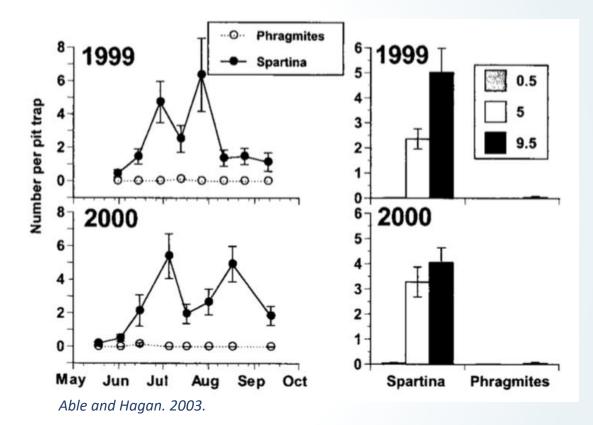
- Physical and biological changes associated with *P. australis* invasion results in impacts to some marsh inhabitants
 - Macroinvertebrates
 - Fish
 - Birds

Macroinvertebrates

Angradi, Hagan, and Able. 2001.

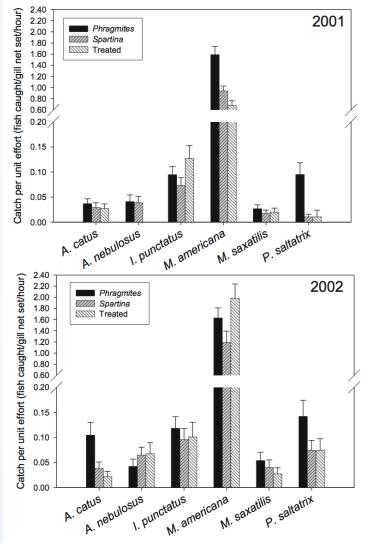
FAUNAL

IMPACTS


North Carolina Coastal Federation **35** years working together for a healthy coast Mummichog

 # of eggs per stem did not vary

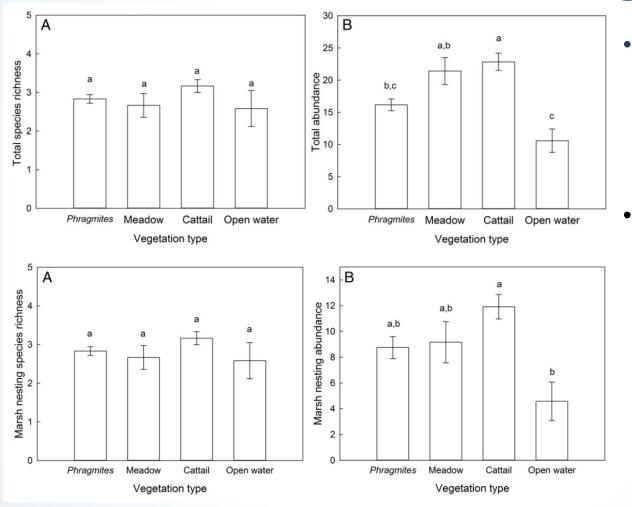
FAUNAL


IMPACTS

- Egg density decreased over reproductive season in *Phragmites*
- Higher proportion of unfertilized eggs in *Phragmites*
- Fish use & *F. heteroclitus* abundance significantly higher in Spartina

Predatory Fish

- No significant difference in fish size
- Little consistency in fish abundance
- White perch was most dominant species


Jones and Able. 2014.

FAUNAL

IMPACTS

FAUNAL IMPACTS

Bird Assemblage

- Phragmites had lower
 total abundance than
 meadow marsh,
 significantly lower
 than cattail
- No strong vegetation influence on marshnesting bird species richness or abundance

Biogeochemical Cycling

- Invasion of *Phragmites australis* can alter natural biogeochemical processes
 - Methane emissions
 - Nitrous oxide

BIOGEOCHEMICAL CYCLING

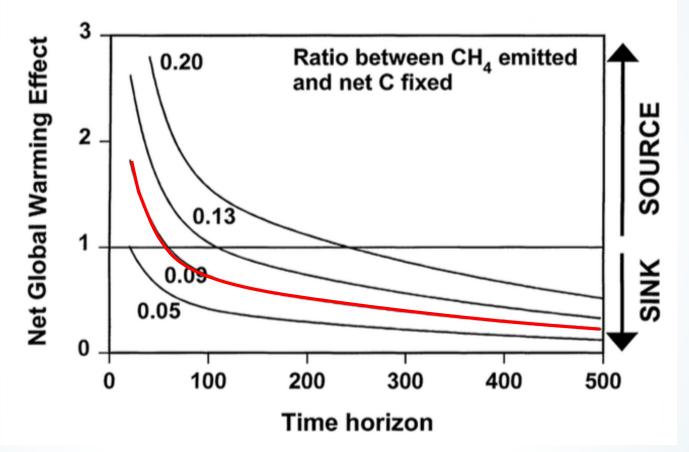
Methane Production in Die-back Communities

50 100 50 100 50 100 die-back lagoon healthy d d HeH g horizons g g m m s s s

methanogenesis (nmol $h^{-1} g^{-1}$)

"...become more intense methane producers as they senesce and die"

- Sorrell et al. 1997


Site	Gross CH₄ Production
Healthy	1-7 mmolCH ₄ /m ² day
Die-Back	10-25 mmolCH ₄ /m ² day
Lagoon	45-53 mmolCH ₄ /m ² day

Sorrell et al. 1997.

BIOGEOCHEMICAL CYCLING

Sink or Source?

Brix, Sorrell, and Lorenzen. 2001.

North Carolina Specific

- Is invasion an ecological disaster?
- "Neutral" effect of *Phragmites* density on:
 - Shoreline change rates, carbon sequestration, plant diversity, community structure
 - Why?
- Management Framework:
 - Identify the ecosystem services to protect
 - Identify the type of environment
 - Protected, human-impacted?
 - Determine the density dependent impacts of *Phragmites* on these services

Management Impacts

- Glyphosate & Imazapyr
 - Ecological Risk Assessments
 - Faunal & Microbial Impacts
 - Restoration
- Non-herbicidal management

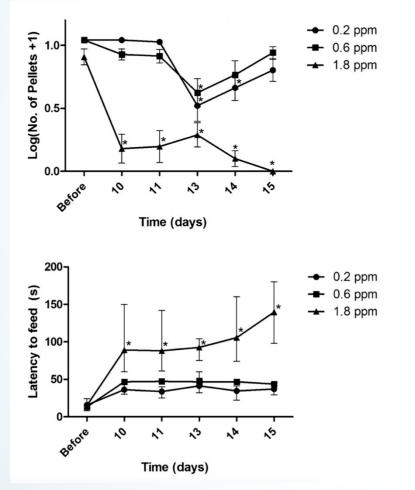
MANAGEMENT IMPACTS

Glyphosate: Ecological Risk Assessment

Risk Characterization				
Organism	Terrestrial Appl.	Aq. Appl.		
T. Mammals	max. 0.005	0.02		
T. Birds	max. 0.00005	0.002		
T. Invertebrates	0.3; 2.4	N/A		
T. Plants	2-769	N/A		
T. Microorganisms	N/A	N/A		
Fish	N/A	0.0009; 0.03		
A. Amphibians	N/A	0.06; 0.2		
A. Invertebrates	N/A	0.1; 0.4		
A. Plants	N/A	0.4-2; 1.6-8		

"The toxicity of the original Roundup and similar formulations containing POEA surfactants is far greater than the toxicity of technical grade glyphosate, Rodeo, or other formulations that do not contain surfactants."

- SERA, 2011



Glyphosate Impacts

Faunal

MANAGEMENT

IMPACTS

Microbial

- 2000 & 2006 study found minimal impacts to microbial communities
 - Soil respiration
 - Community structure
- 2016 study on aquatic habitats found no impact from herbicide treatments

Giaquinto et al. 2017.

MANAGEMENT IMPACTS

Ecological Risk Assessment

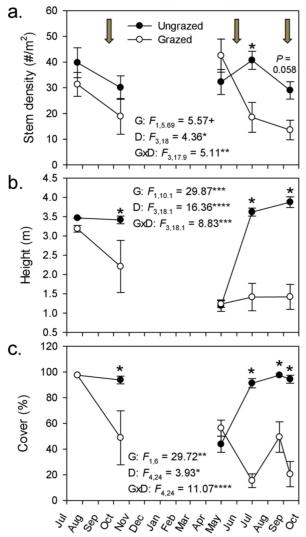
- Non-target species damage
- Non-toxic to terrestrial mammals and birds
- Species specific impacts to terrestrial microorganisms
- Acute toxicity "practically non-toxic" to fish and aquatic invertebrates

Risk Characterization			
Organism	Terrestrial Appl.	Aq. Appl.	
T. Mammals	0.02-0.9	0.009	
T. Birds	1.4	0.002	
T. Invertebrates	0.04-0.6	N/A	
T. Plants	3-194	N/A	
Fish	0.01-0.03	0.01-0.04	
A. Invertebrates	0.006-0.01	0.004-0.01	
Algae	0.005-0.03	0.01-0.04	
A. Macrophytes	0.003-87	12-123	

Imazapyr Impacts

Variable	Taxon	f Value	p Value	<i>p</i> Value, imazapyr treatment
Abundance	Total	1.04	0.45	0.64
	Caecidotea	1.86	0.21	0.89
	Crangonyx	0.72	0.60	0.58
	Dipteran	1.78	0.23	0.39
	Chironomid	1.33	0.34	0.44
	Polypedilum	1.46	0.30	0.84
	Chironomus	1.15	0.40	0.26
	Ablabesmyia	1.33	0.36	0.32
	Procladius	2.73	0.13	0.14
Taxa richness	Total	0.95	0.48	0.39
	Dipteran	0.59	0.68	0.63
	Chironomid	0.82	0.55	0.48

Fowlkes et al. 2003.


MANAGEMENT

IMPACTS

- No significant impacts to macroinvertebrates
- Toxicity low to birds and mammals
- Added surfactants may influence
 mammals
- Wetlands tend to be slower to recover after treatment with imazapyr

Non-Herbicidal Impacts

Silliman et al. 2014.

MANAGEMENT

IMPACTS

- Reed cutting
- Burning
- Grazing
- 40 years of management review

Summary

- Invasion is driven by anthropogenic forces
- Habitat is significantly altered
- Faunal impacts depends on species in question
- Increases in methane production, and potentially nitrous oxide
- Management should be based on which ecosystem services are to be protected
- Do the benefits of treating with herbicides outweigh the costs? Should other methods be pursued?

