

Hydrogeology and Water-Quality Conditions in the Surficial, Castle Hayne, and Peedee Aquifers: 2012-2013

Kristen McSwain USGS South Atlantic WSC

October 28, 2015 Water Supply Summit, Wilmington NC

U.S. Department of the Interior U.S. Geological Survey

Where did the data come from?

In October 2011 CFPUA and USGS began a cooperative study of groundwater resources in the greater New Hanover County area It had been more than 40 years since the last comprehensive study of groundwater conditions (G. Bain, 1970) Updated information would provide a better understanding of how population growth has

affected the quantity & quality of groundwater

Study Area

Study Area Geologic/Hydrogeologic Units

SYSTEM	SERIES	GEOLOGIC UNITS	HYDROGEOLOGIC UNITS	DESCRIPTION
Quaternary	Holocene	Surficial sand deposits	Surficial aquifer	light gray to light yellow sand, silt, and clay silt, clay, and sandy clay overlies moldic limestone and sand aquifer
	Pleistocene	Undifferentiated Pleistocene and Pliocene deposits		
Tertiary	Pliocene			
	Oligocene	River Bend Formation ¹	Castle Hayne confining unit Castle Hayne aquifer	
	Eocene	Castle Hayne Formation ²		
	Paleocene	Beaufort Formation ³		
Cretaceous	Upper Cretaceous	Peedee Formation	Peedee confining unit	gray, fine to medium- grained sand interbedded with black clay
			Peedee aquifer	
		Black Creek Formation	Black Creek confining unit	sandy clay, silty clay, and clay

¹ Exists only in southern New Hanover County (Zarra, 1991).

² Unit is discontinuous in study area. ¹Exists only in southeastern Brunswick and southern New Hanover Counties (Zarra, 1991).

Updated Digital Elevation Surface

Bathymetry of Cape Fear River from COE dredging Jan to Feb 2012

Tide adjusted and integrated with existing digital elevation surfaces

How did we find wells?

Officials in area to conduct groundwater study

Kristen McSwain, a hydrologist with the U.S. Geological Survey, prepares to take a sample at the home of John Nartowicz in Wilmington on April 23, 2012.

Photo by MIke Spencer

Buy Photo

By Kate Elizabeth Queram Kate.Queram@StarNewsOnline.com

Published: Tuesday, April 24, 2012 at 11:20 a.m. Last Modified: Tuesday, April 24, 2012 at 11:20 a.m.

Impossible to recreate Bain study Drilling new wells not an option Citizen volunteers Press release ran April/May 2012 Star News Channel 14/TWC Several smaller e-journals

167 domestic
(homeowner) wells
inventoried June
2012
about 50% ultimately
used in the study in
some way

Public water supply Industrial

Public water supply Industrial Other large water users Golf courses

Public water supply Industrial Other large water users Golfcourses Monitoring wells A total of 240 were used in the final report

Hydrostratigraphic Framework

146 wells with reported data, driller's logs, or geophysical logs Spatial positions of major boundaries of the formations – model skeleton Interpretation of how sediments were deposited during the geologic past and how they now interconnect

to transmit groundwater

Hydrostratigraphic Framework

146 wells with reported data, driller's logs, or geophysical logs Spatial positions of major boundaries of the formations – model skeleton Interpretation of how sediments were deposited during the geologic past and how they now interconnect

to transmit groundwater

Hydrostratigraphic Framework

Groundwater Level/Water-Quality Sampling

Aug/Sept 2012 Very dry summer, but....

Groundwater Levels

35 Castle Hayne aquifer wells31 Peedee aquifer wells

Groundwater Levels

Water-Level Difference 1964-2012

Water-Quality Sampling

97 well sites
7 surficial aq
42 Castle Hayne aq
43 Peedee aq
5 multiple aq
4 surface water sites

Dissolved Iron

Aesthetic nuisance on EPA Secondary DWS at 300 ug/L Natural microbial process

Dissolved Iron

Dissolved Chloride

250 mg/L on EPA Secondary DWS because of taste Highest chloride measured in the Castle Hayne aq was 7,350 mg/LIn the Peedee aq it was 919 mg/L Both in domestic wells near Futch Creek Rd

Dissolved Chloride

Chloride Concentration Difference 1965-2012

For More Detailed Information

Available at http://pubs.usgs.gov /sir/2014/5169/ Data sets available for digital downloading

Prepared in cooperation with the Cape Fear Public Utility Authority

Hydrogeology, Hydraulic Characteristics, and Water-Quality Conditions in the Surficial, Castle Hayne, and Peedee Aquifers of the Greater New Hanover County Area, North Carolina, 2012–13

Scientific Investigations Report 2014–5169

U.S. Department of the Interior U.S. Geological Survey

Questions

Kristen McSwain, L.G., P.G. U.S. Geological Survey South Atlantic Water Science Center Raleigh, North Carolina 919-571-4022 kmcswain@usgs.gov