

Aquifer Storage and Recovery (ASR) ALTERNATIVE USE IN A WATER SYSTEM

Michael E. Richardson Water Resources Manager, CFPUA

Water Treatment Plant Service Areas

- Sweeney Water Treatment Plant (Surface Water)
 - Largest in System
 - Supplies 80% of Service Area
- Nano Filtration Plant (Groundwater)
 Northern 17% of Service Area
- Groundwater (Well System)
 - 2 Small Systems Comprising 3% of Southern and Western Service Area
- Aquifer Storage and Recovery
 - Eastern Area Near Wrightsville Beach (Sweeney Service Area)

3

What is ASR?

ASR- Aquifer Storage and Recovery

Three Step Process = 1 Cycle:

- 1. Treated water is placed into an existing groundwater aquifer through a well casing **RECHARGE**
- 2. The water is **STORED** in the aquifer for future use
- 3. Water is **RECOVERED** through a well and pumped back into distribution system

Distribution System

Process of Recharge

 Open valve to provide desired recharge rate

Monitor flow and pressure

 End when desired volume has been achieved

Allow water to sit in aquifer

- Test for quality
- Recovery to begin when predetermined criteria are met
- Emergency recovery can begin anytime

Cross Section of NC Aquifers

(modified from Winner and Coble, 1996)

All ASR Wells and Monitor Wells November 2007

Cycle Testing

- Smaller scale recharge/storage/recovery volume
- Testing for Permitting
 Agencies
 - Dictated by Injection Permit
 - Almost all treated water and groundwater constituents to be tested

Water Quality Monitoring

- Baseline for Groundwater from Monitoring Well
- Water quality testing (Treated Water)

Cycle Testing

- Recovery testing
 - Test "Tap" Water to Determine Where Influence Area Boundaries Are
 - Tracer

CFPUA's ASR

- Concept/Design/Permitting 2004 November 2011
- Construction 2012
- Cycle Testing
 - Cycle 1 2013
 - Cycle 2 2016
 - Well rehab for sand issues 2015
 - Full Operation 2016

GOAL – Water Quality and Emergency Supply

CFPUA – Cycle Testing

Cycle 1

- Recharge From March to May 2013 26 Million Gallons
- Storage From May to September 2013
- Recovery October 2013

• Findings

- Reduced THM's from 80 PPM to 10 PPM (95 Days of Storage)
- Area of Influence Different than expected *Fluoride Tracer
- Higher volume of sand recovered
- Allows Sweeney to operate more efficiently at lower demand times

CFPUA – Cycle Testing

Cycle 2

- Recharge Began March 2014
- Sand issues screen well Nov 2015
- Storage TBD
- Recovery TBD

• Findings (so far)

- Start-up smoother
- Operator familiarity

How Can This Help Operation of a Water System?

Cost Effective Seasonal Storage of Finished Water

- No physical tank to maintain
- Fluoride remains in stored water
- May allow the Water Treatment Plant to operate more efficiently during lower demand periods
- Can Leave it "Empty"
- Assist with Peak Demands
 - Dependable/Efficient Volume for Peak Usage Periods
- Enhanced Water Quality
 - THM attenuation
 - Same quality as plant output

How Can This Help Operation of a Water System?

• Emergency Supply

- Can enhance supply to neighboring systems with issues
- Enough volume to supply short term during storms
- Could use during line breaks

How Can This Help Operation of a Water System?

Could slow/reverse salt water intrusion into aquifer

modified from Winner and Coble, 1996)

Where to install your ASR

 Locate near larger/artery type mains to reduce infrastructure improvements where possible

- Locate at point in system with highest water age to allow for blending to improve quality
- Consider Topography

Operational Resources/Activities

- Recharge
 - Daily Site Visit to Observe System
 - Weekly/Bi-weekly Water Quality Testing

Operational Resources/Activities

- Daily Site Visit
- Bi-Weekly Testing for THM's

Operational Resources/Activities

Recovery

- Daily Site Visit to Observe System
 - Chemical Feed
 - Pump Rate
 - Sand Separators
- Weekly and Bi-weekly Water Quality Testing
- Monthly Reporting

Questions?

Michael E. Richardson, CFPUA <u>Michael.richardson@cfpua.org</u> 910-332-6723