

Coastal Restoration and Community Economic Development in North Carolina

NC Oyster Summit

March 10, 2015

RTI International is a trade name of Research Triangle Institute.

www.rti.org

RI

What Is RTI International

RTI is an independent, nonprofit institute that provides research, development, and technical services to government and commercial clients worldwide.

Our mission is to improve the human condition by turning knowledge into practice.

Key Question

How does coastal restoration in North Carolina affect community and economic development?

- Assess the links between coastal restoration and economic development
- Perform an economic impact analysis of related projects
- Review how other states benefit from coastal restoration
- Identify how coastal restoration fits within the state's larger economic development strategies

Answer

Industry Growth

 Diversify and stablize the economic base
 Eoster growth it

 Foster growth in tourism, recreation, hunting and fishing

Employment

- Provide jobs to local workers
- Purchase goods and services from local small business

Community Development

- Create attractive place to live, work, and play
- Build civic capacity
- Build community assets (e.g., parks and public access points)
- Strengthen resilence to storms and extreme weather

Industry Growth

Based on peer-reviewed literature

Employment

Restoration Type	Jobs Created Per \$1Million invested
Shellfish	16.6 – 25.33
Wetlands	10.4 – 29.45
Water Quality	23.1 – 28.8
Living Shorelines	19

Based on peer-reviewed literature

- Community Development
- Create attractive places to live, work, and play.
- Build civic capacity
- Strengthen resilience to storms and extreme weather.

Economic Impact Analysis for Four Federation Projects

Project	Funding Received (thousands)	Business Revenue (thousands)	Household Income (thousands)	Jobs
Oyster Restoration	\$5,030	\$7,507	\$1,900	50
Morris Landing	\$527	\$946	\$325	11
North River Farms	\$2,437	\$5,248	\$1,833	55
Bradley Creek Elementary	\$76	\$137	\$47	1
Total	\$8,071	\$13,387	\$4,104	116

How Coastal Restoration Aligns with Economic Development Plans

North Carolina Economic **Development Board** Recommended Strategies for Economic Growth

Industry Growth in Tourism 1.

- Investment in Rural North Carolina 2.
- 3. Small Business Growth

Conclusions

- Opportunity for coastal restoration to be part of the economic developer's toolkit
- Creates jobs and affects industries and households for workers in sectors such as construction, fisheries, tourism and landscaping
- Jobs and spillovers are accrued almost entirely at the local level to the project
- Fresh approach for supporting small homegrown businesses, rural investment, and supporting tourism and fishing industries
- Projects can kick start employment in sectors negatively impacted from fluctuations in seasonal employment
- Builds civic capacity through engagement with local schools, students and volunteers

More Information

Sara Lawrence Senior Manager, Economic Development 919.990.8650 slawrence@rti.org

ECONOMIC VALUATION OF ECOSYSTEM SERVICES PROVIDED BY OYSTER REFS Jonathan Grabowski Charles Peterson

Northeastern University UNC-Chapel Hill IMS

Can we estimate the economic value of each service?

Quantifying the Bioeconomic Value of Ecosystem Goods and Services

- Monetary Approaches:
 - -Consumptive goods & services
 - Market value of resource
 - -Non-consumptive goods & services
 - Revealed preference models
 - Replacement costs, Travel cost methods, expected damage function
 - Stated preference models
 - Contingent valuation/Willingness-to-pay models

How do We Measure Restoration Success?

Outline

I. Quantifying oyster habitat losses

II. Valuing ecosystem services

III. Scaling service delivery

1. Changes in Areal Extent

1. Changes in Oyster Reef Adult Biomass

II. Valuing Oyster Reef Services

- What are the values of each service provided by oyster reefs?
- Does the value of the oysters justify the investment in restoration for reef-degrading harvest of the oysters?
- What about the other services are oyster sanctuaries a good investment?

Ecosystem Goods and Services Provided by Oyster Reefs

	Ecosystem Service	Benefit/Value
1.	Production of oysters	Market & Recreational Value
2.	Augmented fish production	Market & Recreational Value
3.	Water filtration & Deposition of pseudofeces	↑ SAV, Recreational Use & Remove Anthropogenic K
4.	Stabilization of adjacent habitats	↑ SAV & Salt Marsh Habitat
5.	Provision of habitat for inverts	t Biodiversity & Productivi
6.	Carbon burial	↓ Greenhouse Gas Concentrations
7.	Diversifying the seascape	†Synergies among Habitas

1. Production of Oysters

- Used data from two regions:
- 🛑 Chesapeake Bay
 - Historical data in Rothschild et al. (1994)

North Carolina

 Data from restored oyster reef experiments:
 Lenihan & Grabowski (1998)
 Lenihan & Peterson (2004)

1. Production of Oysters

- Chesapeake Bay:
 - 1890: $550g/m^2 = $65,876 \text{ per HA}$
 - 1991: $22g/m^2 = $2,640 \text{ per HA}$

- North Carolina experimental reefs:
 - \$20,890-52,224 per HA

2. Finfish & Crustacean Value: Reef Augmented Fish Production

Pre-RestorationPost-
Restoration
Meta-Analysis of Research in Southeastern U.S.Peterson et al. (2003)

Who Catches these Fish & 'Captures' their Value?

value

\$

2. Recreational Harvesters

WTP, Trip costs

Commercial Value of Fish from Reefs

nnual Net Value		\$4,123 per HA			
		¢1 100 mar UA	Total (\$/yr/10 m ²)): \$	3.70
Pigfish		0.135	\$ 0.60	\$	0.08
Spottail Pinfish		0.005	\$ 1.14	\$	0.01
Black Sea Bass		0.046	\$ 2.90	\$	0.13
Gag Grouper		0.293	\$ 4.82	\$	1.41
Toadfish		0.022	\$ 4.95	\$	0.11
Gray Snapper]	0.114	\$ 3.43	\$	0.39
Stone Crab ^d	ł	0.653	\$ 6.75	\$	0.88
Sheepshead		0.586	\$ 1.17	\$	0.69
Blennies]	0.050	\$ -	\$	-
Gobies		0.644	\$ -	\$	-
Silversides (3 spp.)		0.002	\$ -	\$	-
Bay Anchovy		0.019	\$ -	\$	-
Sheepshead Minnow		0.000	\$ -	\$	-
		$(Kg/10m^2)$	(\$/Kg)	(\$/yr	10 m^2
		Production ^a	Fish Price ^b	Fisł	n Value
		Augmented Fish	Commercial	Aug	gmented

3. Water Quality/Nutrient Processing Value **Potential Benefits:** 1. Removal of 3. Recreational **2. SAV** enhancement values Denitrificati Filtration NO livate Reduction Dissimilatory A Nitrite Ammonification/ Oxidation/ Assimilation Nitrate Reduction Nitrification PON/DON **Replacement costs**, WTP for recreation, Valuation of SAV nutrient offsets consume seafood

services

S

A. Removal of Nitrogen

- Calculated Kg N removed per year from denitrification
- Compared to the cost of removing N via various management strategies
 - -\$24 (avg. for Chesapeake)
 - -\$120 (max for Chesapeake Bay)
 - \$28.23 NC Nutrient Offset Credit Program

N Removal: Denitrification Value

- Used existing data on nitrogen flux in oyster reefs and mud flats (Piehler and Smyth 2011, unpublished data)
- Subtracted denitrification levels on mud flats from oyster reefs
- Net additional flux from oyster reef habitat:
 - -Value per HA: \$1,385-\$6,716
 - -Average: \$4,050

B. SAV Enhancement Value

- Used Seagrass Value Estimate:
 - Annual: \$33,730 per HA (Opaluch unpub. data)

- Total (20 yr lifespan, 3% discount): \$516,876
 per HA
- If 1 HA of oyster reef promotes the creation of:
 - -0.005 HA of additional SAV: \$1,292
 - -0.010 HA of additional SAV: \$2,584

4. Shoreline Stabilization

Used replacement cost valuation:

- Calculated cost of shoreline stabilization:
- Compared to cost of bulkheads, stone groins, riprap

Bulkhead or

Riprap Revetment

Shoreline Stabilization

Convert linear m of revetment/bulkhead to m² of reef:

-1 HA of reef could protect 2,000 m of shoreline

Summary: Oyster Ecosystem Services

Average value of oyster services= \$10,325 per hectare

Restoration Scenarios:

1. Destructive harvest

2. Max services w/o shoreline protection 3. Max shoreline protection

Questions

What are the values of each service provided by oyster reefs?

Avg = \$10K/HA, can achieve much more

 Does the value of the oysters merit the investment in restoration to destructively harvest?

No*

 What about the other services – are oyster sanctuaries a good investment?

Yes; where they are located matters

III. Scaling service delivery

1. Using the NC sanctuary program to examine reef values

Commercial Fish Value

Reef area	Augmented fish value	Value of fish per sanctuary
# acres	$acre^{-1} yr^{-1}$	\$ yr ⁻¹
18.60	\$1,736	\$32,286

Clam Shoal Sanctuary					
Reef area	Augmented fish value	Fish value of sanctuary			
# acres	\$ acre ⁻¹ yr ⁻¹	\$ yr ⁻¹			
26.96	\$1,736	\$46,798			

Recreational Fish Value

% of NC Trips to reef	Fishing effort	Added value per trip	Fish value of sanctuary
sanctuaries	# trips yr ⁻¹	\$ trip ⁻¹	\$ yr ⁻¹
0.1%	2,469	\$19.73	\$48,708
1.0%	24,687	\$19.73	\$487,083

Clam Shoal Sanctuary						
% of NC Trips to reef Fishing effort Added value per trip Fish value of sanctuary						
sanctuaries	# trips yr ⁻¹	\$ trip ⁻¹	\$ yr ⁻¹			
0.1%	3,578	\$19.73	\$70,601			
1.0%	35,783	\$19.73	\$706,008			

Augmented DNF Value

	Crab Hole Sanctuary					
Reef area	Halo area	DNF Value	Oyster reef DNF Value	Oyster sed. DNF Value	Value of DNF per sanctuary	
# acres	# acres	$acre^{-1} yr^{-1}$	\$ yr ⁻¹	\$ yr ⁻¹	\$ yr ⁻¹	
18.60	2.91	\$5,621	\$104,551	\$16,378	\$120,929	
	Clam Shoal Sanctuary					
			Clam Shoal Sanctu	ary		
Reefarea	Halo area	DNF Value		ŭ	Value of DNF per sanctuary	
		DNF Value \$ acre ⁻¹ yr ⁻¹		ŭ	Value of DNF per sanctuary $\$ yr ⁻¹	

Projecting the Value of Each Sanctuary

Long-term projected values	Additional Benefits			
Reef life span	Crab Hole	Clam Shoal	Total	
1 year	\$206,218	\$300,747	\$506,964	
5 years	\$972,749	\$1,418,652	\$2,391,401	
10 years	\$1,811,851	\$2,642,394	\$4,454,245	
25 years	\$3,698,626	\$5,394,056	\$9,092,682	
50 years	\$5,465,110	\$7,970,288	\$13,435,398	

Collaborators

 Robert Brumbaugh, Robert Conrad, Andrew Keeler, Jim Opaluch, Michael Piehler, Sean Powers, and Ashley Smyth, Joel Fodrie, Steven Scyphers, Rachel Gittman, Line Zu Ermgassen

