Weighing Your Options

How to Protect Your Property from Shoreline Erosion: A handbook for estuarine property owners in North Carolina

Written by Seachange Consulting for the N.C. Division of Coastal Management -North Carolina National Estuarine Research Reserve in association with the National Oceanic and Atmospheric Administration, Center for Coastal Fisheries Habitat Research, and The Nicholas Institute for Environmental Policy Solutions.

Funding and support for this project was provided by CICEET, the Cooperative Institute for Coastal and Estuarine Environmental Technology. A partnership of the National Oceanic and Atmospheric Administration and the University of New Hampshire, CICEET develops tools for clean water and healthy coasts nationwide.

June 2011

INTRODUCTION

Welcome to Weighing Your Options: How to Protect Your Property from Shoreline Erosion. If you own property on one of North Carolina's estuaries, you can use this guide as a tool to learn about the choices you have to control your shoreline erosion and help decide which approach may be right for you. In North Carolina, we make a distinction between waterfront property that is located on the estuary, referred to as estuarine, shoreline, soundfront or riverside property, and waterfront property located directly on the ocean, referred to as *oceanfront*. Why? State laws and regulations addressing estuarine and oceanfront property, and the available erosion control methods, are quite different.

Exploring the estuary, Bogue Sound

This guide focuses on estuarine property. We'll introduce you to the six main erosion control options in use in North Carolina and give you information about the out-ofpocket costs and tangible benefits of each option. We'll also give you information about "hidden" costs and benefits that you may want to factor into your decision-making.

Kite-boarding, Cape Hatteras

You are fortunate to have a piece of estuarine shoreline to call your own, whether it's your year-round residence or a weekend getaway. And if you've noticed some shoreline erosion lately, you're probably a little concerned. But there are ready solutions. Let's start with some preliminary steps to get a "big picture" overview before we get to the details.

STEP 1: LOOK AT ALL THE OPTIONS

Main Erosion Control Methods Used for Shorelines in North Carolina Estuaries

- Vegetation
- Oyster Reefs
- Marsh Sills
- Riprap
- Breakwaters
- Bulkheads

Some of the methods used to protect against shoreline erosion may be familiar to you, and some less so. Each method has its advantages and disadvantages, depending upon location and exposure - that is, which direction your property faces, the amount and power of the wind and waves it withstands, geography, and shore type. We'll discuss each alternative, using photos and drawings to explain each approach and how it works to control erosion. We'll also list property characteristics favorable to each option, note installation costs, and talk about other costs and benefits

associated with each option that affect the beauty and ecological health of the estuaries and sounds that make coastal North Carolina so special.

Nesting egret

STEP 2: CONSIDER WHAT YOUR ESTUARY DOES FOR YOU

North Carolina has one of the longest estuarine coastlines in the nation – close to 9,000 miles in fact, and we're proud of that. Besides being beautiful, our estuaries provide jobs, offer food and habitat for aquatic and landloving creatures, purify our water, help temper the effects of hurricanes, and provide recreation for fishermen, sailors, kite-boarders, hunters, swimmers and bird watchers, among many other attributes.

Bird watching in winter, Pamlico Sound

Estuaries also provide a source of transportation and beautiful real estate. And in addition to protecting us from storms and wave surge, a healthy estuary provides a nursery for juvenile fish, offers a home and feeding ground to birds, and feeds and houses innumerable shellfish, dolphins, otters and turtles – making it possible for us to enjoy the aforementioned opportunities.

Together, these characteristics make up the "estuarine ecosystem." The functioning of estuarine ecosystems is largely dependent on how people use the adjacent coastal land, and while you may not think your individual shoreline stabilization protection project will have much effect on the surrounding ecosystem, the cumulative effect of all the shoreline alterations in your area can alter the balance of ecosystems in the near-shore environment.

Boating in Back Sound

STEP 3: NARROW YOUR OPTIONS

Six may seem like an overwhelming number of choices, and that's before we count the combinations. Oyster reefs and vegetation can be combined with all the other options. But chances are good that you can narrow the number down pretty quickly. You'll find a list of questions in the back of the guide on a worksheet. Answer the questions as best you can before reading the guide, and then compare your answers with the information presented as you read through the text.

The Importance of Shoreline Type

The first question asks, "What is your type of shoreline?" In North Carolina, the shoreline bordering an estuary can be, broadly, a swamp forest, a marsh, an oyster reef, or a sediment bank (photo examples are on the right).

Certain protection methods are better suited to certain types of shoreline. For example, a low sediment bank, which has a continuous gentle slope below and above the water line, can be protected well by a marsh sill, whereas a high sediment bank, with a steep slope, can't. A swamp forest works well with certain vegetation (i.e., cypress trees), but since there is no bank to stabilize, a bulkhead would not be a good match. We'll point out the good matches throughout the document.

Right column: Shoreline Types (topbottom): swamp forest, marsh, oyster reef, low sediment bank, high sediment bank.

You'll notice that two shoreline types, marshes and oyster reefs, are also included in our list of erosion control methods. That's because they have the ability to stabilize the shoreline on their own. If your property includes a marsh, it's partly under water at high tide or during a wind tide. The marsh vegetation traps the sediment washed in by the tides, and their dense root system holds it in place. Marsh vegetation dies back and roots become incorporated into the sediment, further building the foundation for sustaining marsh growth. Together, these selfperpetuating processes counter erosion by dissipating waves and adding sediment. If you have an oyster reef, it accumulates shell material and traps sediment landward of the reef, adding fill and maintaining the shoreline.

Step 4: Understand the Permit Process

Your State Representative

Permitting is often viewed as a bureaucratic quagmire. Actually, the process can be streamlined and efficient, and over and done within two weeks. The representatives from the North Carolina Division of Coastal Management (DCM) who come to look at your property can be very helpful. They are a part of DENR – the Department of Environment and Natural Resources, and have permitting responsibilities under CAMA – the Coastal Area Management Act. The permit reps have the same goals you have: to keep you and your property safe and the estuary healthy.

Surveying near Wilmington, N.C. Types of Permits and Costs

Marsh sills, riprap revetment, and bulkheads can require a general or a major permit; oyster reefs and breakwaters require a

major permit; and *vegetation* can require a major, minor, or general permit, or none at all. A **general permit** is used for projects that have relatively small impacts on the environment, and the process usually involves contact with only DCM. A **major permit** is used for large projects and those requiring other state or federal permits.

You may need a major permit if, for example, your project will cover vegetation that's in the water, alter fish habitat, or interfere with water quality. If your project requires a major permit DCM reps can provide help with the process. Depending on the scope of your project, your location, and the permit required, you (or your contractor, engineer, or landscaper) may need to interact with as few as one or as many as 14 federal and state agencies, such as USACE (United States Army Corps of Engineers), North Carolina DMF (Division of Marine Fisheries), or North Carolina DWO (Division of Water Quality). A list of all 14 agencies, including their acronyms and full names,

appears at the end of this guide, with a brief explanation of what they do and why they would be concerned with your project.

DCM permit costs run between \$100 and \$400, and additional charges may be encumbered depending on the permit requirements of the agencies involved.

Doing It Yourself vs. Bringing in the Professionals – or Both

Two erosion control alternatives: vegetation and oyster reefs, lend themselves to being Do It Yourself (DIY) projects. Consider your personal situation: do you have more time than money? If so, then pay particular attention to the vegetation and oyster reefs descriptions and see if they fit your project goals. The other options – riprap revetments, marsh sills, bulkheads, and breakwaters will probably require the services of a contractor or coastal engineer.

Bulkhead under construction

These options can be supplemented by planting vegetation or adding hard material that supports oyster growth, such as oyster cultch (shell material), limestone or granite, so you can include some DIY involvement if you choose.

Bulkhead with planted marsh, Beaufort, NC

If you think you'll need a contractor but haven't hired one yet, read through this guide, note the kinds of experience and skills you're looking for, and then call DCM. Ask for a preliminary visit, and ask your rep for a list of local contractors – and ask your neighbors, friends, and real estate agent for their recommendations.

Contractors tend to specialize in one stabilization type based on their experience and the equipment they own or can readily access. Not surprisingly, that will be the method they recommend, and they may not take into account all the specifics regarding your property and the impact you choose to have on your estuary. Reading through this book will help ensure you get the best stabilization method possible for your property and make you a more informed client, as well as add to your appreciation of your local ecosystem.

If you're already working with a contractor, keep in mind that experts agree that to preserve the existing shoreline type and ecosystem, the location of the erosion control method on your property is more important than the actual method. So if you're installing a bulkhead or riprap revetment, the more

landward it can be placed, the better. Again, your DCM rep can size up your property and make site recommendations to support your preferences.

Neighboring properties with different erosion protection approaches

Being a Good Neighbor

Under CAMA general permitting guidelines, you must demonstrate to DCM that you have contacted all adjacent property owners and notified them about your plans. This can be done in two ways: submit 1) signed letters of no objection; or 2) a certified mail return receipt form. Your neighbor will have 10 days upon receipt of your letter to submit comments to DCM on your planned work; if they fail to submit a response, this is interpreted as "no

objection."

Major permitting requirements are similar but have a more stringent notification requirement.

Where to Find a DCM Rep

Whatever your situation, you'll be doing yourself a favor to get DCM involved from the start. Local offices and phone numbers are listed below.

Contact Information for DCM

- Elizabeth City: 252-264-3901
- Morehead City: 252-808-2808
- Washington: 252-946-6481
- Wilmington: 910-796-7215

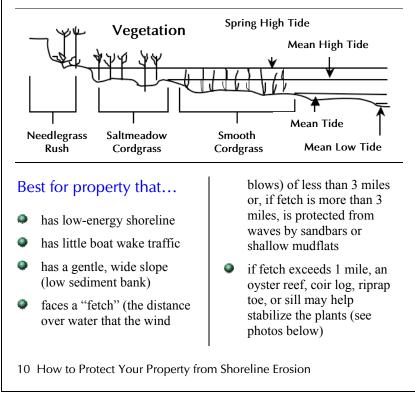
For More Information

Complete DCM contact information and in-depth information about the permitting process can be found at: <u>http://dcm2.enr.state.nc.us</u>

STEP 5: KNOW YOUR TIDES

Estuarine water levels are extremely variable, a result of storm and wind events, seasonal changes, and astronomical cycles. For example, in North Carolina's estuaries, the average water level is 7 inches higher in September than in January. And the "mean" or "normal" high tide line indicates where the high tides reach about half the time – which means the other half of the time, tides are higher than the mean high tide line. Add this variability to the current trend of rising sea level, and it's a good idea to install shoreline stabilization structures such as bulkheads and riprap as high on the shoreline as possible. This will add to their longevity and help protect the natural resources seaward of your property.

Now, let's get started finding an erosion control option that works for you.



Boat wake from a passing vessel

VEGETATION

What is it and how does it work?

Salt tolerant plants, such as smooth cordgrass, saltmeadow cordgrass, and needlegrass rush, are planted along the shoreline in 10–40 foot wide patches, forming a marsh fringe. Once the marsh is established, it is very effective at blocking wave energy—a 15-foot wide marsh can reduce the incoming wave energy by over 50 percent. Plant roots extend a foot or more below the surface, and further stabilize the shoreline.

Vegetation with riprap toe

Vegetation with oyster toe

Vegetation with stone sill

Vegetation with coir log

Out-of-pocket costs& considerations

At-a-glance:

Vegetation Planting

- Range: \$7.50 (DIY) -\$100 (full-service landscaper) per linear foot / 20 ft wide
- Average: \$22

Factors in determining cost:

cost of labor

- number of plants
- fill and grading
- shipping
- landscaping fees
- cost of coir logs, toe or sill (if recommended)
- need for replanting

Consider: Vegetation planting lends itself to a DIY project. Plants are sold by the "plug," measuring either about 4" x $\frac{1}{2}$ " and averaging \$1.10 each, or 2" x $\frac{1}{2}$ " and averaging \$0.50 each. Depending on the size of the plug, you'll need at least one or two cordgrass plants for every 4 square feet of property you want to plant, and one to three saltmeadow plants for every 2 square feet. One motivated person can plant 1,000 plugs in a day; another tactic is to enlist a few semi-motivated friends and encourage them to plant 3,000 plants in about five hours; yet another approach is to hire local labor at the rate of \$1–\$3 a plug. Planting between March and June will give the plugs time to stabilize before winter storms and increase the likelihood of success.

However, if you require coir logs, a landscaper must install those and a major permit is required. A coir log is interwoven fibers bound together with biodegradable netting. The log stabilizes a site while vegetation becomes established. They cost about 100-150 each for a $12" \times 10'$ log, and cost approximately \$50 for installation. If you need a riprap toe or stone sill, you'll need a contractor to install that structure.

Maintenance: Vegetation planting may require weed control in low salinity areas, replacement of dead and missing plants, and post-storm inspection.

Longevity: Planted salt marshes can last for decades, although storm events or changes in site water movement and wave energy may shorten their lifespan. However, if plants are lost as a result of a storm event, as long as the sediment bank remains relatively unchanged, a replant can be done at fairly low cost. And, vegetation can often recover on its own. Results will vary depending on a variety of sitespecific factors, including storm events, local rates of relative sea level rise and sediment availability. Coir logs have a 6-12 year lifespan.

Permits: No permit is necessary for vegetation planting unless you need to fill or grade your property before planting. Larger projects or projects that will require fill or grading will require a permit, and installing a riprap toe or sill will require a general or major permit. Coir logs require a major permit as well.

Ecosystem Service	Effect of Vegetation Planting on Ecosystem Value	
Wave erosion and sea level rise protection	0	marshes dissipate wave energy, provide stability, and trap sediments
Water quality		marsh systems filter runoff and improve water quality
Animal habitat		salt marshes provide food and protection for finfish and shellfish, mammals and shorebirds
Carbon storage		both marsh plants and the soil beneath them store significant amounts of carbon
Fish production		marshes provide protection and habitat for juvenile fish
	\bigcirc	adult fish prowl the edges of salt marshes seeking prey
Ecosystem diversity	\bigcirc	plants and animals thrive, increasing species diversity
Recreation		planting a salt marsh will replace beach area (depends if you like beaches)
		if you want a pier, it may need to be higher in the areas where it crosses the marsh

Sample project costs		
Specifications	Project #1 –Full Service Landscaper	Project #2 – DIY
Region	Pamlico Sound	Swansboro
Shoreline exposure	long fetch (5 miles)	short fetch (1/2 mile)
Length of property	500 feet	100 feet
Width of proposed marsh fringe	40 feet	20 feet
Cordgrass/saltmeadow/ needlegrass	20/10/10 feet	13/7/0 feet
Fill required	1 ton	none
Permit	general	none
In-water stabilization	coir logs	none
Estimated cost	\$25,000	\$750

Possible Combinations

- Vegetation landward of oyster reefs and breakwaters
- Vegetation seaward of bulkheads and riprap
- Marsh sills (see section below)

Did You Know?

There is a direct link between the quantity of cordgrass found in our estuaries and the health of our fisheries. Adult fishes, such as sea trout, red drum and flounder, prowl the edges of marshes feeding on shrimp, killifish and other prey hiding among the vegetation.

Low salinity marsh, Kitty Hawk Bay

The coastal marsh is one of the most productive areas on earth, producing up to 70,000 pounds of plant material per acre per year.

Red drum fishing, Newport River

In 2007, N.C. commercial fishermen landed more than 30 million pounds of finfish, and over 32 million pounds of shellfish, resulting in an industry valued at \$82 million per year.

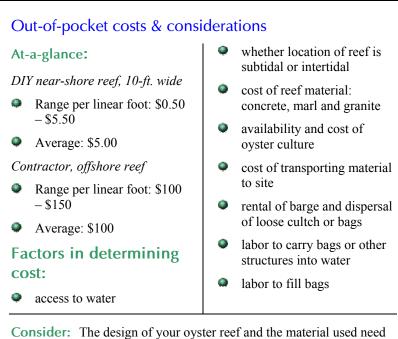
OYSTER REEFS

(also called oyster rock, sills, beds, patches and toes)

What are they and how do they work?

Oyster reefs form natural breakwaters and protect shoreline property from erosion and storm damage. They are often used in conjunction with one of the other shoreline control types discussed in this guide, and may be added to a pre-existing shoreline erosion project. Reefs are built by adding material to the water, such as small bags of oyster shells, loose oyster or clam shells, riprap, marl, or other suitable substances. The material attracts live oyster spat, which settles and creates a live reef. Permitting representatives will assess your site and determine if a sill, rock, patch, bed or toe is more appropriate, and guide you to the best material and design specifications to use.

Generally, if you live in the northern part of the state, a subtidal oyster reef is the way to go; if you live in the central or southern region, an intertidal reef will probably work best.


Oyster reef

Best for property that...

Barge dispersing "cultch"

is on water with known oyster productivity

Consider: The design of your oyster reef and the material used need to be appropriate for your property type. For example, light material in a high-energy area will be scattered, and heavy material on a site with deep, soft mud will sink until enough material is deployed to stabilize the site – which could be very expensive.

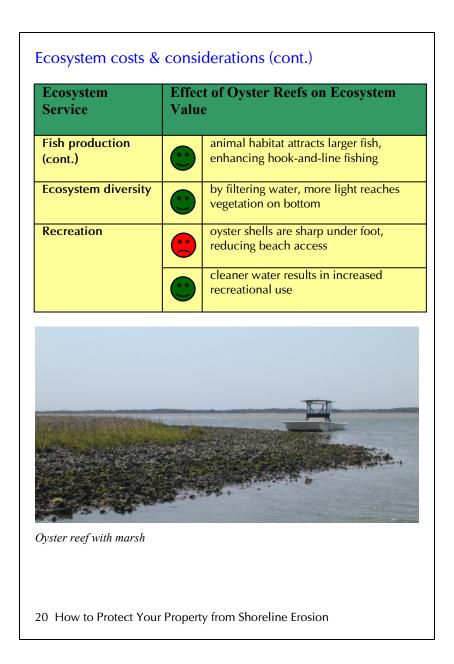
Rock and marl can be used for lower layers and capped with cultch to help minimize costs. Remember, the cost of transporting them must be factored into your costs. Also, in some situations it will make sense to hire a barge and dispersal unit and approach the project area from the water. In others, if there is easy access to the site from your property for large equipment, a trailer would be the better choice

Maintenance: Assuming your site and environmental conditions are suitable, oysters may take up to a year to cement into a living reef.

Before they do, shells may be lost or shift following a storm, and they can be buried with normal wave action; in either event they will need to be replaced. Once the reef is established, it is self-sustaining.

Longevity: Once established, oyster reefs are extremely durable and may last for 50 years or longer.

Permits: Contact DCM when planning your oyster structure. You will need DCM, USACE, DMF, and DWQ guidance and approval for any oyster project that involves deployment of material into North Carolina coastal waters.


Possible Combinations

- Oyster reef with landward marsh
- Oyster "toe" on bulkheads
- Oyster cultch added to intertidal riprap and breakwaters

Oyster reef with landward marsh and spot fishing "fleet," Gallants Channel, Beaufort, NC

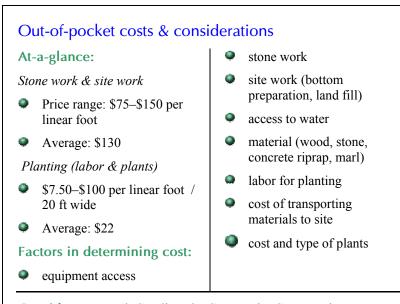
Ecosystem Service	Effect of Oyster Reefs on Ecosystem Value	
Wave erosion and sea level rise protection	•	oyster reefs dissipate wave action, trap sediment and add shell material to living reef
Water quality	•	oysters filter runoff and improve water quality
Animal habitat	•	reefs provide habitat for shrimp, crabs, clams, snails and worms, as well as many finfish
Carbon storage		oysters remove carbon from the water column in forming their calcium carbonate shells
Fish production	•	if you live in an "approved" harvest area, as specified by DENR based on input from the FDA, oysters, fish, and crab can be harvested from the reefs or areas nearby during the open season, usually Oct. 5 – May 15
		growing areas can be permanently or temporarily closed to harvest due to poor water quality and public health concerns
	•	certain state waters are approved for shellfish harvest, and this harvest is part of the public trust. If you deploy oyster cultch and oysters successfully grow on your reef, the general public is entitled to harvest those oysters. (Continued

Sample project costs			
Specifications	Project #1	Project #2	
Region	Albemarle Sound	Bogue Sound	
Shoreline exposure	long fetch	low wave energy	
Length of property	208 feet	150 feet	
Number of mounds	20 mounds, 20 ft. each, set in checker- board pattern	n/a	
Distance from shoreline	50 feet	20 feet	
Construction material	concrete, marl and loose shells	bags of "cultch"	
Professional help	marine contractor and barge operator	labor to fill bags; barge operator to disperse bags	
Estimated Costs	\$25,000 + permits	\$3,700 + permits	

Did you know?

A single adult oyster is capable of filtering 15-35 gallons of water each day.

Flounder, menhaden, herring, anchovies, spadefish, striped bass, cobia, croaker, silver perch, spot, speckled trout, Spanish mackerel, pinfish, butter fish, harvest fish, blue


pinfish, butter fish, harvest fish, blue crab, stone crab, penaeid shrimp, black drum, and several species of mullet all spend a part of their life on Atlantic Coast oyster reefs.

MARSH SILLS

What are they and how do they work?

A marsh sill is a combination of a protective barrier placed in the water parallel to the shoreline and a 10–30 foot wide strip of vegetation planted (or pre-existing) on shore. Constructed of sloping stone, oyster rock or wood, the barrier – the sill – breaks wave energy and allows the marsh to grow, and the marsh further absorbs wave energy and prevents erosion. Most sills have a low profile, usually rising only 6 inches above the water at high tide; this allows waves to pass over and through it, providing nutrient-rich sediment to the marsh. The sill's intermittent openings allow fish to swim into the marsh and feed.

Consider: In North Carolina, the Community Conservation Assistance Program (CCAP) may provide assistance for marsh sill projects, reimbursing landowners up to 75% of their costs up to a maximum of \$5,000. Applications are submitted through local soil and conservation districts. For more information, visit http://www.enr.state.nc.us/DSWC/pages/ccap_program.html.

Maintenance: Depending on construction material, a marsh sill may require repair following a storm. Plants may have to be replanted until the marsh is well established, even if no storms occur.

Longevity: The planted marsh associated with a sill can last for decades, and can be replanted if needed. Granite structures are extremely durable and may persist for 50 years or longer. Results will vary depending on a variety of site-specific factors, including storm events, local rates of relative sea level rise and sediment availability.

Permits: A marsh sill can require either a major or a general permit.

Stone sill with marsh

Ecosystem Service	Eff	ect of Marsh Sill on Ecosystem Value
Wave erosion and sea level rise protection	•••	marsh sills protect existing shoreline from wave energy
	•	marsh sills absorb and dissipate wave energy; marsh vegetation traps sediments which counters sea level rise
		sills can sometimes reflect wave energy, causing erosion issues in other locations
Water quality	•	marsh systems filter runoff and improve water quality
Animal habitat	•	a sill is an immediate "condominium" for aquatic species, often colonized by oysters
		installing a sill may cover habitat of existing species
Carbon storage		marsh is an excellent storage facility for carbon
Fish production		marsh provides a nursery for juvenile fish
Ecosystem diversity	•	the addition of marsh and marsh habitat attracts new species, e.g., migrating birds
	•	a marsh maintains animal access to the water
Recreation		may increase length of dock required to reach open water
		dry beach habitat is replaced by a marsh sill system
	$\overline{}$	marshes attract migrating birds, increasin bird-watching opportunities

Sample project costs			
Specifications	Project #1	Project #2	
Region	Pamlico Sound	Grapevine Bay	
Shoreline exposure	long fetch	low wave energy	
Length of property	150 feet	500 feet	
Base width of sill	9 feet	15 feet	
Distance from shoreline	20 feet	75 feet	
Construction material	wood	limestone	
Width of marsh	20 feet	40 feet	
Area of planned marsh	3,000 sq feet	48,000 sq feet	
Permit	general	major	
Estimated cost	\$3700 + permits	\$25,000 + permits	

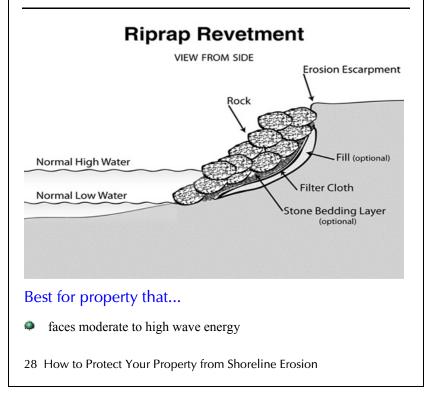
Possible Combinations

Marsh sill & oyster reef

Marsh sill with offshore oyster reefs

Did you know?

Studies valuing shorefront real estate show that the cleaner the body of water, the higher the value of the property – and there's a ripple effect on


adjacent non-shorefront property, positively affecting neighborhood property values up to 500 feet from the water's edge.

RIPRAP Revetment

(also called a revetment, sloping revetment and shoreline hardening)

What is it and how does it work?

Riprap forms a protective, sloping barrier between the water and land. Usually constructed of heavy stone and lined with a permeable sheet, riprap breaks wave energy and prevents soil from eroding. The angle of the riprap is determined by expected wave height, but is commonly 3:1 to 1.5:1 (horizontal : vertical). The larger the expected waves, the flatter the riprap and the heavier the stones need to be.

At-a-glance:

source of stone and delivery Price range: \$90-\$150 per ۵ linear foot distance ٢ Average: \$120 size of stone ۵ Factors in determining cost: ۵ fill access to shoreline ٩ bedding layer 0

۵

depth of water

 material: broken concrete; marl, granite
 height distance riprap extends

Consider: Broken concrete, free of rebar, can be used as a low-cost option as a base, then "dressed up" with granite. Granite weighs four times as much as concrete, but the same tonnage can cost twice as much. If you are in a high wave energy location, granite may be necessary due to its increased weight.

Maintenance: Stones or rocks will settle and readjust with storms or waves, and occasionally will need replacing. Limestone will be displaced much more easily than granite.

Longevity: Riprap is durable and installations can last for several decades, although storm events may shorten the lifespan of riprap installations. Granite is more durable than marl.

Permits: Riprap can require either a general or a major permit

Ecosystem Service	Effect of Riprap on Ecosystem Value	
Wave erosion and sea level rise protection	 if properly built, riprap can withstand waves in extreme conditions reflected waves may cause scour or erosion of adjacent property 	
Water quality	material chosen for riprap should be clean and not introduce any pollutants into the water	
	if vegetation is removed or lost, there is loss of water-filtering function	
Animal habitat	can add to habitat complexity by introducing new surface material, e.g., barnacles and oysters	
	a sloping surface causes a wider footprin that extends further waterward, covering more bottom habitats	
Carbon storage	no significant effect	
Fish production	reduction in habitat causes reduction in fish population	
Ecosystem diversity	riprap alters the bottom habitat, replacir soft bottom with hard, affecting plant an animal diversity and abundance	
	reduces diversity and abundance of bird and shellfish, among other species	
Recreation	can be used adjacent to deep water for easy boat access	
	may reduce beach area	

Sample project costs			
Specifications	Project #1	Project #2	
Region	Pamlico Sound	Wilmington area	
Shoreline exposure	5 mile fetch	low wave energy	
Length of riprap	150 feet	500 feet	
Depth of water at high tide	4 feet	10 feet	
Height of riprap	2 feet	5 feet	
Construction material	broken concrete; marl	granite	
Permit	general	major	
Estimated cost	\$13,500	\$75,000	

Possible Combinations

Riprap & oyster reef

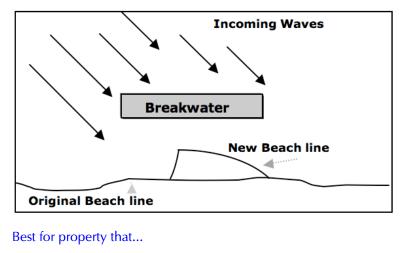
Riprap & marsh

Riprap & bulkhead

1 1

Did you know?

Worldwide, estuaries store 7,200 teragrams of carbon a year – that's between 3% and 7% of all human-produced emissions.


Canoeing on Albemarle Sound

BREAKWATERS

(also called a wave break, wave fence, or hardened structure)

What are they and how do they work?

A breakwater is a stone structure placed in the water parallel to the shoreline. As the name implies, it "breaks" the strength of the incoming waves, resulting in a weaker wave reaching land, lessening erosion. For a longer stretch of shoreline, a series of breakwaters can be set up side by side at regular intervals, with the gap between them equal to the length of one breakwater. Sand often fills that gap, creating a small beach between the breakwater and the land.

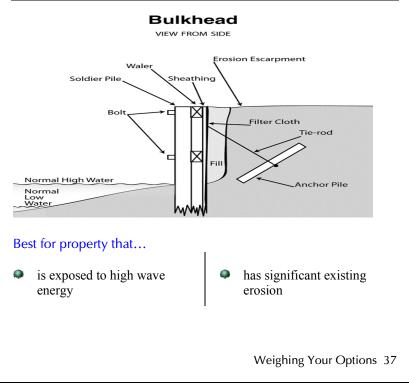
- experiences moderate to high wave action
- experiences boat wake traffic and sand moving down the shore

Ecosystem Servic	e	Effect of Breakwater on Ecosystem Value
Wave erosion and sea level rise protection		the sand that accumulates and forms a beach landward of a breakwater is often "stolen" from shorelines down drift of the property effectively dissipates wave energy
	\bigcirc	
	•	waves reflected from breakwaters may cause scour or erosion of adjacent shorelines, "tombolos" (see photo on previous page) are formed as a result of reflected rather than absorbed wave energy
Water quality		no significant effect
Animal habitat		barnacles and oysters often settle on breakwaters, increasing foraging areas for fish the "beach" that is formed from accumulating sediment reduces fish
Carbon storage		habitat no significant effect
Fish production		reduction in habitat causes reduction in fish population
Ecosystem diversity		no significant effect
Recreation		a new beach is formed (depends if you like beaches)

Specifications	Project #1	Project #2
Region	Albemarle Sound	Cedar Island
Shoreline exposure	long fetch	low wave energy
ength of preakwater	150 feet	Two x 10 feet
Depth of water at igh tide	4 feet	4 feet
Height of preakwater above high tide level	2 feet	1 foot
Construction naterial	stone	stone
Permit	major	major
stimated cost	\$25,000	\$5,000

Did you know?

Estuarine wetlands can remove 20 to 60% of metals in the water, trap and retain 80 to 90% of sediment from runoff and eliminate 70 to 90% of entering nitrogen.



BULKHEADS

(also called shoreline hardening, armoring, and seawall)

What are they and how do they work?

A bulkhead is a vertical structure, much like a solid fence, built on the water-side of an eroding shoreline and anchored into the eroding bank. Once erected, the gap between the bulkhead and a nearby highpoint on the property is filled in with soil. The bulkhead holds the soil in place, acting as a barrier between the waves and the property. It can be built of wood, vinyl, steel, concrete or fiberglass.

Out of pocket costs & considerations				
At-a-glance:				
 Price range: \$80-\$1,200 per linear foot 	 minimizing impacts on existing seagrass, oysters, or 			
Average: \$135	marsh			
Factors in determining cost:	amount of backfill required			
access to the water	material: wood, concrete, steel, fiberglass or vinyl			
 equipment necessary shoreline conditions – 	number and complexity of tiebacks necessary			
cleanup, roots	 height of wall (above "mud 			
length of bulkhead	line")			
contractor workload	 if required, adding riprap in front of bulkhead 			

Consider: As expected from the number of factors to consider in building a bulkhead, the range in price is huge: \$100–\$1,200 per linear foot, with residential prices about \$135 / ft. As a rule, the taller the bulkhead needs to be, the more expensive it will be.

Maintenance: Backfill must be retained for the bulkhead to function. Cracks and holes in the bulkhead will allow soil to escape, weakening the bulkhead's support and leading to possible collapse. Periodic inspections are recommended. Wood is the most difficult material to repair.

Longevity: Longevity depends on type of construction and local site conditions, particularly storm events. The usual lifespan for bulkheads varies between 10 and 40 years, with wood falling at the lower end of the range, concrete in the middle, and vinyl/fiberglass at the upper end. With proper construction and maintenance, an average lifespan of 30 years can be expected.

Permits: A bulkhead can require a general or major permit. There are restrictions on the distance from your shoreline you can build a bulkhead and the amount of fill allowed, as well as limits on placement, especially if your site has existing seagrass, oysters or marsh.

Ecosystem costs & considerations

Ecosystem Service		Effect of Bulkhead on Ecosystem Value
Wave erosion and sea level rise protection		if properly built bulkheads provide protection from waves in extreme conditions
inse protection	•	wave energy is reflected rather than absorbed, reflected waves may cause bottom scour and loss of vegetation
		<i>if vegetation is removed</i> : natural buffer to ease waves and stabilize sediments eliminated
Water quality	:)	if bulkhead base is in the intertidal zone, there is an opportunity to plant vegetation that can provide effective filtering and improve water quality
	:	<i>if vegetation is removed</i> : loss of marsh filtering capacity and reflected wave energy may increase re-suspension of sediments into water column
Animal habitat	•••	interruption of corridor between terrestrial and aquatic habitat
	•	loss of shallow water habitat
Carbon storage	••	no significant effect
Fish production		barnacles and oysters often settle on bulkheads, increasing fish foraging areas
		Weighing Your Options 39

diversity	stops the natural creation of wetlands
P	bulkheads reflect incoming wave energy, and depending on the setting may cause scouring of the bottom of the bulkhead; as a result, vegetation and many aquatic organisms cannot become established in front of a bulkhead, reducing diversity.
Recreation	easy access to deep water
Vinyl bulkhead	
Vinyl bulkhead	

Specifications	Project #1	Project #2
specifications	110jeet #1	110jeet #2
Region	Wrightsville	Ocracoke
Shoreline exposure	high wave energy	long fetch
Length of bulkhead	150 feet	50 feet
Depth of water at high tide	6 feet	4 feet
Height of bulkhead above high tide level	5 feet	2 feet
Construction material	fiberglass	wood
Permit	Major	General
Estimated cost	\$90,000	\$7,000

Bulkhead Combinations

- Bulkhead & waterward marsh
- Bulkhead & riprap
- Bulkhead & oyster toe

Vinyl bulkhead with waterward marsh

Weighing Your Options 41

Did you know?

"We think of fish as living throughout the oceans, but most of the action happens close to shore where the food is." More than 90 percent of North Carolina's commercial and recreational seafood species, such as shrimp, flounder and crabs, depend on estuarine waters to provide protective habitat and food.

Recreational fishing in North Carolina produced revenues totaling \$1.2 billion in 2006

PUTTING IT ALL TOGETHER

Choosing the best shoreline erosion control option for your property is an important decision. This booklet has been designed to provide you with an overview of your alternatives so that you can make informed decisions about your choices. In addition to reducing property loss, erosion control methods also have ecological consequences, cost factors and aesthetic implications.

Now that you've read the handbook, you have a solid foundation of information. You can speak with representatives from the North Carolina Division of Coastal Management and/or your contractor about issues of concern, and work with them to select the most appropriate erosion control method for your property.

By taking an interest in your shoreline, you are helping to protect the exceptional beauty of North Carolina's estuaries and preserve it for generations to come.

Weighing Your Options 43

STATE AND FEDERAL AGENCIES POTENTIALLY INVOLVED WITH YOUR EROSION CONTROL CONSTRUCTION, AND AREA OF OVERSIGHT

North Carolina

- Department of Administration, State Property Office (NCDOA SPO): manages the state's submerged lands
- Department of Cultural Resources, Division of Archives and History (NCDCR – Archives & History): protects historic properties and archaeological sites
- Department of Commerce, Division of Community Assistance (NC Commerce – DCA): assists local governments with growth management
- Department of Transportation, Division of Highways (NCDOT): protects state wetlands and waterways through the Highway Stormwater Program and the Ecosystem Enhancement Program
- Department of Environment and Natural Resources (DENR): serves as the lead stewardship agency for the preservation and protection of North Carolina's natural resources. Through its natural resource divisions, DENR works to protect fish, wildlife and wilderness areas. Divisions within DENR include:
 - Division of Coastal Management (**DCM**): responsible for the environmental health of 20 coastal counties, DCM regulates development, helps plan for future growth, and manages the state's coastal reserves
 - Division of Environmental Health (**DEH**): oversees shellfish harvests and recreational water quality
 - Division of Water Quality (**DWQ**): regulates and manages water quality throughout the state, including aquatic habitat

• Division of Land Resources (**DLR**): oversees development within North Carolina while preventing pollution by sedimentation

• Division of Marine Fisheries (**DMF**): promotes health of marine fish by regulating habitat, bottom, wetlands, water column, and submerged aquatic vegetation, and regulates oyster production

• Division of Water Resources (**DWR**): examines hydrology and promotes ecological integrity of streams

• Wildlife Resources Commission (**WRC**): manages hunting, boating, fishing and wildlife conservation

United States

- Environmental Protection Agency (EPA): oversees protection of public water supplies and the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife, and allows recreational activities
- Fish and Wildlife Service (USFWS): manages habitat and resource conservation
- National Marine Fisheries Service (NMFS): promotes habitat conservation and sustaining marine fisheries
- Army Corps of Engineers (USACE; ACE; the Corps): helps preserve and restore wetlands and estuaries, reduce shore erosion and restore beach habitat and oyster beds

Weighing Your Options 45

WORKSHEET

Answer these questions as best you can. You'll learn a lot about your property and you'll identify the characteristics that make it better suited to certain erosion control options. Then, as you're reading through the handbook, you can compare the information about your property with the suitability of each alternative.

1. WHAT IS YOUR SHORELINE TYPE? (SEE PHOTOS ON PAGE 4)

Swamp Forest (are there cypress gum trees?)

Marsh (are there salt water-tolerant plants?)

Oysters (do you have oyster reefs?)

Sediment Banks (is there no vegetation?)

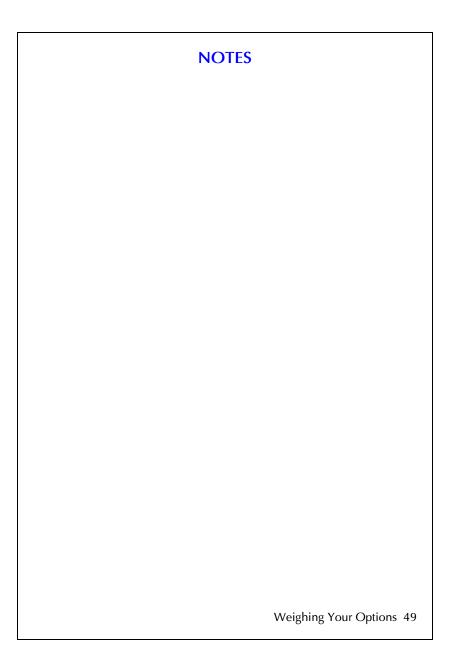
- Low sediment bank (is there a gentle slope above the water line, less than 3 feet over 5 yards?)
- High sediment bank (is there a steep slope above the water line, more than 3 feet over 5 yards?)

Combination (e.g., swamp is upland from a marsh; marsh is landward of an oyster reef) _____

2. DO YOU KNOW WHAT IS CAUSING THE EROSION?

Yes____No _____

If yes:


Boat wake storms wind tides gradual effects other cause (describe)

3A. WHAT DIRECTION(S) DOES YOUR SHORELINE FACE?

N__ NE__ E__ SE__ S__ SW__ W__ NW__

3b . In eastern North Carolina, the direction of strong winds is fairly predictable. If you marked N, SW, NE, W, or S as your answer to 3a , put a big circle around it and pay attention to question 4. The combination of exposure to strong wind and "high fetch" can direct you to certain erosion control alternatives.				
4. How MUCH "FETCH" DOES THE PROPERTY FACE? (i.e., how much water does the wind blow over before it reaches your property?)				
a) less than ¹ / ₂ mile (low fetch)				
b) more than ¹ / ₂ mile but less than 2 miles (medium fetch)				
c) more than 2 miles (high fetch)				
5. How MUCH WAVE ENERGY IS HITTING THE SHORELINE? <i>(i.e., how high do the waves come up the shoreline above the usual high tide mark?)</i>				
a) from boat traffic feet				
occasionally?				
frequently?				
b) during a storm feet				
, o				
occasionally?				

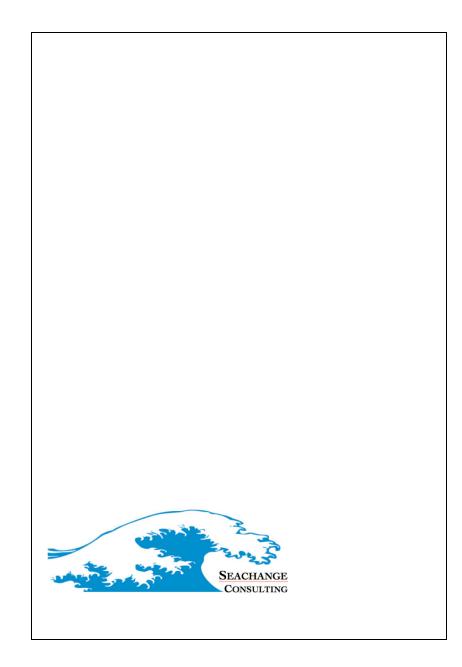
6. What is the length of the shoreline that needs protecting? feet				
7. WHAT ARE YOUR NEIGHBORS DOING?				
a) to the left b) to the right				
8. WHAT BODY OF WATER DOES YOUR PROPERTY TOUCH?				
9. WHAT IS THE SLOPE OF YOUR PF a) gentle b) steep	ROPERTY?			
10. Which of the following activities are important to you?				
Fishing Hunting Bird watching	Swimming Boating Nature			
11. WHICH OF THE FOLLOWING ESTUARY SERVICES ARE MOST IMPORTANT TO YOU?				
Pollution control Fish production and habitat Wildlife habitat	Migratory bird habitat Water quality Surge and flood protection			
<u>12. How long do you plan to be at this property?</u>				
48 How to Protect Your Property from	n Shoreline Erosion			

For more information, visit the following organizations online:

NC DCM: http//:dcm2.enr.state.nc.us/ NOAA / National Estuary Research Reserve System (NERRS): http://www.nerrs.noaa.gov/ NOAA Center for Coastal Fisheries and Habitat Research: www.ccfhr.noaa.gov North Carolina Coastal Federation (NCCF): http://www.nccoast.org/ CICEET: http://ciceet.unh.edu/

Credits:

P. 11, coir log: Photo used courtesy of the Partnership for the Delaware Estuary.


P. 42. Rowan Jacobsen and Michael Beck, "Where Oysters Grew on Trees." *New York Times*, July 24, 2010.

Pp. 2, 4c, 5, 7, 9, 16, 20, 32, 41 and 42: Photos courtesy of National Oceanic and Atmospheric Administration/Department of Commerce.

Pp. 4-5, 7-8, 10, 11a, 15a, 18, 22, 26-28, 30, 36, 37 and 40: Photos courtesy of DENR.

All other photos property of the authors and protected by copyright.

Thank you to all the North Carolina contractors, marine engineers, real estate agents, landscapers, barge operators, state and federal government employees, scientists, coastal consultants, economists, developers, insurance agents and estuarine property owners who contributed their time, knowledge and experience to this guide. Any errors or misrepresentations of our communications are the sole responsibility of the authors.

